Lyn Dissociation from Phosphorylated FcεRI Subunits: A New Regulatory Step in the FcεRI Signaling Cascade Revealed by Studies of FcεRI Dimer Signaling Activity

Author:

Ortega Enrique1,Lara Martha1,Lee Irene1,Santana Carla1,Martinez A. Marina2,Pfeiffer Janet R.2,Lee Rebecca J.2,Wilson Bridget S.2,Oliver Janet M.2

Affiliation:

1. *Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico; and

2. †Department of Pathology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131

Abstract

AbstractCross-linking the heterotrimeric (αβγ2) IgE receptor, FcεRI, of mast cells activates two tyrosine kinases: Lyn, which phosphorylates β and γ subunit immunoreceptor tyrosine-based activation motifs, and Syk, which binds γ-phospho-immunoreceptor tyrosine-based activation motifs and initiates cellular responses. We studied three FcεRI-dimerizing mAbs that maintain similar dispersed distributions over the surface of RBL-2H3 mast cells but elicit very different signaling responses. Specifically, mAb H10 receptor dimers induce very little inositol 1,4,5-trisphosphate synthesis, Ca2+ mobilization, secretion, spreading, ruffling, and actin plaque assembly, whereas dimers generated with the other anti-FcεRI mAbs induce responses that are only modestly lower than that to multivalent Ag. H10 receptor dimers activate Lyn and support FcεRI β and γ subunit phosphorylation but are poor Syk activators compared with Ag and the other anti-FcεRI mAbs. H10 receptor dimers have two other distinguishing features. First, they induce stable complexes between activated Lyn and receptor subunits. Second, the predominant Lyn-binding phospho-β isoform found in mAb H10-treated cells is a less tyrosine phosphorylated, more electrophoretically mobile species than the predominant isoform in Ag-treated cells that does not coprecipitate with Lyn. These studies implicate Lyn dissociation from highly phosphorylated receptor subunits as a new regulatory step in the FcεRI signaling cascade required for Syk activation and signal progression.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3