Regulation of the Macrophage Vacuolar ATPase and Phagosome-Lysosome Fusion by Histoplasma capsulatum

Author:

Strasser Jane E.1,Newman Simon L.2,Ciraolo Georgianne M.3,Morris Randal E.3,Howell Michael L.3,Dean Gary E.1

Affiliation:

1. *Molecular Genetics, Biochemistry, and Microbiology;

2. †Medicine, Division of Infectious Diseases; and

3. ‡Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH 45267

Abstract

Abstract Histoplasma capsulatum (Hc) maintains a phagosomal pH of about 6.5. This strategy allows Hc to obtain iron from transferrin, and minimize the activity of macrophage (Mø) lysosomal hydrolases. To determine the mechanism of pH regulation, we evaluated the function of the vacuolar ATPase (V-ATPase) in RAW264.7 Mø infected with Hc yeast or the nonpathogenic yeast Saccharomyces cerevisae (Sc). Incubation of Hc-infected Mø with bafilomycin, an inhibitor of the V-ATPase, did not affect the intracellular growth of Hc, nor did it affect the intraphagosomal pH. In contrast, upon addition of bafilomycin, phagosomes containing Sc rapidly changed their pH from 5 to 7. Hc-containing phagosomes had 5-fold less V-ATPase than Sc-containing phagosomes as quantified by immunoelectron microscopy. Furthermore, Hc-containing phagosomes inhibited phagolysosomal fusion as quantified by the presence of acid phosphatase, accumulation of LAMP2, and fusion with rhodamine B-isothiocyanate-labeled dextran-loaded lysosomes. Finally, in Hc-containing phagosomes, uptake of ferritin was equivalent to phagosomes containing Sc, indicating that Hc-containing phagosomes have full access to the early “bulk flow” endocytic pathway. Thus, Hc yeasts inhibit phagolysosomal fusion, inhibit accumulation of the V-ATPase in the phagosome, and actively acidify the phagosomal pH to 6.5 as part of their strategy to survive in Mø phagosomes.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3