Cryptosporidium infection in an adult mouse model. Independent roles for IFN-gamma and CD4+ T lymphocytes in protective immunity.

Author:

Ungar B L1,Kao T C1,Burris J A1,Finkelman F D1

Affiliation:

1. Department of Preventive Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814.

Abstract

Abstract Cryptosporidium is a protozoan parasite that can cause chronic life-threatening diarrhea in immunocompromised persons. Host immune responses are poorly understood, an impediment to development of effective therapy. In mice, normal adult BALB/c animals resist infection whereas chronic symptomatic cryptosporidiosis develops in adult nude mice and in neonatally infected BALB/c mice treated with anti-CD4 mAb. To define further the immune defects that allow mice to be infected with Cryptosporidium, adult BALB/c mice were treated with cytolytic anti-CD4 or anti-CD8 or with neutralizing anti-IFN-gamma or anti-IL-2 mAb. Chronic infection, manifested by continuous shedding of sparse but statistically significant numbers of oocysts, occurred with anti-CD4 +/- anti-CD8 mAb treatment although anti-CD8 mAb treatment alone did not allow infection. Treatment with anti-IFN-gamma mAb greatly enhanced oocyst shedding but infection was self-limited. Treatment with a combination of anti-CD4 and anti-IFN-gamma mAb permitted both chronic infection and shedding of large numbers of oocysts. Furthermore mice treated initially with anti-CD4 mAb showed a substantial increase in oocyst shedding when later treated with anti-IFN-gamma mAb; and mice treated initially with both mAbs showed a decline in oocyst shedding when anti-IFN-gamma mAb was stopped. Anti-IFN-gamma mAb treatment of congenitally athymic adult BALB/c mice led to an approximately a 75-fold increase in oocyst shedding. Treatment of adult BALB/c mice with anti-IL-2 mAb did not permit Cryptosporidium infection. These results suggest that redundant immunologic mechanisms limit Cryptosporidium infection such that both CD4+ cells and IFN-gamma are required to prevent initiation of infection whereas either alone can limit the extent (IFN-gamma) or duration (CD4+ T cells) of infection. They also suggest that production of IFN-gamma by a non-T cell contributes to host immunity.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3