An Adoptive Transfer Model of Allergic Lung Inflammation in Mice Is Mediated by CD4+CD62LlowCD25+ T Cells

Author:

Wise James T.1,Baginski Theodore J.2,Mobley James L.2

Affiliation:

1. *Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197; and

2. †Department of Immunopathology, Parke-Davis Pharmaceutical Research/Division of Warner Lambert Co., Ann Arbor, MI 48105

Abstract

AbstractAnimal models of allergic lung inflammation have provided important insight into the cellular and biochemical factors involved in the pathogenesis of human asthma. Herein, we describe an adoptive transfer model of OVA-specific eosinophilic lung inflammation in the mouse that is used to characterize the cells involved in mediating the pulmonary inflammatory response. We report that freshly isolated spleen cells from OVA-sensitized mice are unable to prime naive recipient mice to respond to a subsequent OVA aerosol challenge. Subjecting the spleen cells to short term restimulation with Ag in vitro, however, renders the cells competent to transfer activity. The magnitude and the kinetics of the eosinophilic pulmonary inflammation in the adoptive transfer recipients are nearly identical with those generated by a more conventional active sensitization/challenge protocol, with the notable exception of differential production of plasma IgE in the two models. Extensive negative and positive selection of splenocyte subtypes indicates that the transfer of Ag-primed CD4+ T cells is both necessary and sufficient to establish full responsiveness in the recipient mice. Additional phenotypic characterization of the transfer-reactive CD4+ T cells indicates that they are found within the CD62LlowCD25+ subset and secrete high levels of IL-5 in response to Ag stimulation. Limiting dilution analysis-derived minimal frequency estimates indicate that approximately 1 in 8500 of the sensitized, cultured spleen cells produces IL-5 in response to OVA stimulation in vitro, suggesting that eosinophilic lung inflammation can be induced in naive mice by the transfer of <1200 Ag-specific CD4+ T cells.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3