Dendritic Cells Undergo Rapid Apoptosis In Vitro During Antigen-Specific Interaction with CD4+ T Cells

Author:

Matsue Hiroyuki1,Edelbaum Dale1,Hartmann Aubrey C.1,Morita Akimichi1,Bergstresser Paul R.1,Yagita Hideo2,Okumura Ko2,Takashima Akira1

Affiliation:

1. *Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and

2. †Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan

Abstract

AbstractThe terminal fate of dendritic cells (DC) remains relatively uncertain. In this study, we tested the hypothesis that DC undergo apoptosis after Ag-specific interaction with T cells. When splenic DC isolated from BALB/c mice were cocultured with HDK-1 T cells (a keyhole limpet hemocyanin (KLH)-specific CD4+ Th1 clone) in the presence of KLH, they showed conspicuous cell death as measured by propidium iodide (PI) uptake and chromatin condensation, whereas they remained relatively intact when incubated with either T cells or KLH alone. Likewise, the long term DC line XS52, which was established from BALB/c mouse epidermis, also died rapidly (within 2 h), and they exhibited characteristic DNA laddering when cocultured with HDK-1 T cells in the presence of KLH. RT-PCR and FACS analyses revealed the expression of CD95 (Fas) by XS52 DC and of CD95 ligand (CD95L) (Fas ligand) by activated HDK-1 T cells, suggesting a functional role for these molecules. In fact, anti-CD95L mAb inhibited partially (50%) T cell-mediated XS52 cell death, and coupling of surface CD95 with anti-CD95 mAb triggered significant XS52 cell death, but only in the presence of cycloheximide. Thus, ligation of CD95 (on DC) with CD95L (on T cells) is one, but not the only, mechanism by which T cells induce DC death. Finally, DC isolated from the CD95-deficient mice were found to be significantly more efficient than DC from control mice in their capacity to induce delayed type hypersensitivity responses in vivo. We propose that T cell-induced DC apoptosis serves as a unique down-regulatory mechanism that prevents the interminable activation of T cells by Ag-bearing DC.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3