NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site.

Author:

Cogswell J P1,Godlevski M M1,Wisely G B1,Clay W C1,Leesnitzer L M1,Ways J P1,Gray J G1

Affiliation:

1. Department of Molecular Genetic, Glaxo Research Institute, Inc., Research Triangle Park, NC 27709.

Abstract

Abstract In these studies, we show that NF-kappa B induces transcription from the human pro-IL-1 beta (IL-1 beta) gene. A recombinant plasmid pIL-1(-4000)-CAT, containing 4 kb of the IL-1 beta gene upstream regulatory sequence was transactivated by the p65 subunit of NF-kappa B or by treatment of the cells with a combination of NF-kappa B inducers including LPS, PMA, and dibutyryl cyclic AMP (L+P+C) in U937 cells. Coexpression of p65 with L+P+C treatment led to a synergistic response, whereas coexpression of the I kappa B alpha/MAD-3 protein, in place of p65, blocked L+P+C induction. A series of 5' deletion mutants of the IL-1 beta promoter were used to define two p65 response regions: region I located between -2800 to -2720 bp and region II located between -512 and -133 bp. Electrophoretic mobility shift assays confirmed that NF-kappa B-like proteins could bind to two consensus binding sites in region II. A site-specific mutation in only one of these NF-kappa B sites (-296/-286 bp) caused a specific loss of induction by p65 or L+P+C. A cyclic AMP response element (CRE) site (-2761/-2753 bp) in region I has been shown previously to be critical for L+P+C induction. Mutation of the CRE in an enhancerless test plasmid containing two copies of region I blocked transactivation by p65. Likewise, coexpression of I kappa B alpha inhibited CRE-dependent L+P+C induction of the wild-type counterpart. These data show that NF-kappa B regulates a nonconsensus CRE site in addition to the consensus binding site at -296/-286 bp and suggest that NF-kappa B may play multiple roles in the induction of IL-1 beta transcription.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3