Affiliation:
1. *Department of Pathology, University of Iowa Health Care, Iowa City
2. †Iowa City Veterans Affairs Medical Center, Iowa City, IA
Abstract
Abstract
An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ–, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell–mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell–mediated immune suppression and provide important insights into the biology of human CD8+ T cell–mediated suppression that could be targeted for immunotherapeutic intervention.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
U.S. Department of Veterans Affairs
Publisher
The American Association of Immunologists