Complement activation limits the rate of in vitro treponemicidal activity and correlates with antibody-mediated aggregation of Treponema pallidum rare outer membrane protein.

Author:

Blanco D R1,Walker E M1,Haake D A1,Champion C I1,Miller J N1,Lovett M A1

Affiliation:

1. Department of Microbiology and Immunology, University of California, Los Angeles School of Medicine 90024.

Abstract

Abstract A modification of the in vitro immobilization assay together with freeze-fracture analysis was used to determine the factors responsible for the prolonged time required in vitro to achieve killing of Treponema pallidum subsp. pallidum. The modified immobilization assay permitted separate determination of the time required for binding of antibody to the surface of T. pallidum and for C activation. Treponemes were preincubated in heat-inactivated immune rabbit serum (IRS) followed by washing the organisms in 2.5% BSA/PBS to remove unbound IRS antibody before the addition of C. The results showed that a comparable degree of C-dependent killing occurred when treponemes were preincubated in heat-inactivated IRS for either 30 min or 16 h, indicating that treponemicidal antibody rapidly binds to the surface of T. pallidum. Preincubation of treponemes for 17 h in heat-inactivated IRS followed by a 1-h incubation in C resulted in the loss of 80% treponemal motility, indicating that C activation results in rapid killing of T. pallidum. Treponemes preincubated in IRS for 1 h, then incubated for 8 h and 16 h in heat-inactivated normal serum also lost a significant level of motility after the addition of C; in contrast, motility was unaffected after 30 min and 4 h of incubation in heat-inactivated normal serum under similar conditions. These results demonstrate that, whereas antibody binding to and C-mediated killing of treponemes can proceed rapidly, the prolonged time to C activation limits the rate at which treponemicidal activity occurs in vitro. In addition, treponemicidal activity using the modified immobilization assay could not be demonstrated with antiserum against T. pallidum endoflagella, antiserum against proteins solubilized from T. pallidum using the detergent Triton X-114, and a mAb to the T. pallidum r190-kDa "4D" protein, suggesting that these molecules are not accessible to surface binding antibody. Freeze-fracture analysis, recently used in our laboratory to demonstrate that the outer membrane of T. pallidum has rare constituent protein, was utilized to demonstrate outer membrane target Ag of IRS antibody. T. pallidum rare outer membrane protein (TROMP) molecules were shown in freeze-fracture electron micrographs to be consistently aggregated following a 16-h incubation of treponemes in IRS. In contrast, no aggregation of TROMP was present in treponemes incubated in normal rabbit serum for 16 h or in treponemes incubated in IRS for 2 h. These findings suggest that the rate of C activation leading to in vitro treponemicidal activity is limited by the time required for aggregation of antibody-bound TROMP molecules.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3