Prophylactic Vaccine Targeting TLR3 on Dendritic Cells Ameliorates Eosinophilic Pneumonia in a Mouse SARS-CoV Infection Model

Author:

Iwata-Yoshikawa Naoko1,Nagata Noriyo1,Takaki Hiromi2,Matsumoto Misako23ORCID,Suzuki Tadaki1,Hasegawa Hideki14,Seya Tsukasa23ORCID

Affiliation:

1. *Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan;

2. †Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan;

3. ‡Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan; and

4. §Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan

Abstract

Abstract Putative subcomponent vaccines of severe acute respiratory syndrome coronavirus spike protein and ARNAX (TLR3-specific adjuvant for priming dendritic cells) were examined and compared with spike protein + Alum in a mouse BALB/c model. Survival, body weight, virus-neutralizing Ab titer in the blood, and viral titer in the lung were evaluated for prognosis markers. The infiltration degrees of eosinophils in the lung were histopathologically monitored at 10 d postinfection. The results were: (1) adjuvant was essential in vaccines to achieve a complete recovery from infection, (2) ARNAX displayed optimal body weight recovery compared with Alum, (3) ARNAX was optimal for the amelioration of eosinophilic pneumonia, and (4) the eosinophil infiltration score was not associated with the neutralizing Ab titer in the blood or viral titer in the lung. Although the pathological link between the TLR3 vaccine and lung eosinophil infiltration remains unclear, severe acute respiratory syndrome–mediated eosinophilic pneumonia can be blocked by the prior induction of dendritic cell priming by ARNAX.

Publisher

The American Association of Immunologists

Subject

Immunology and Allergy,General Medicine,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3