Lung Epithelial Regnase-1 Dampens Local Immune Response but Does Not Worsen Susceptibility to Klebsiella pneumoniae

Author:

Lin Becky1ORCID,Fan Li2,Jackson Shaterra1,Matunis Aidan R.1ORCID,Lou Dequan2,Chen Kong2,Trevejo-Nuñez Giraldina1ORCID

Affiliation:

1. *Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA

2. †Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA

Abstract

Abstract Klebsiella pneumoniae (KP) presents a global health threat, leading to significant morbidity and mortality due to its multidrug-resistant profile and the limited availability of therapeutic options. To eliminate KP lung infection, the host initiates a robust inflammatory response. One of the host’s mechanisms for mitigating excessive inflammation involves the RNA-binding protein regnase-1 (Reg1, MCPIP1, or ZC3H12A). Reg1 has an RNA binding domain that recognizes stem-loop structures in the 3′ untranslated region of various proinflammatory transcripts, leading to mRNA decay. However, excessive suppression of inflammation by Reg1 results in suboptimal KP control. Reg1 deficiency within the nonhematopoietic compartment confers resistance to KP in the lung. Given that lung epithelium is crucial for KP resistance, we hypothesized that selective deletion of Reg1 in lung epithelial cells might enhance proinflammatory signals, leading to a better control of KP. Our transcriptomic analysis of epithelial cells in KP-infected wild-type mice revealed the presence of three distinct alveolar type 2 cell (AT2) subpopulations (conventional, inflammatory, and cycling) and enrichment of Reg1 in inflammatory AT2 cells. We conditionally deleted Reg1 in lung AT2 cells (ΔReg1), which amplified the local inflammatory response in the lung and increased macrophage cell numbers compared with controls. However, when ΔReg1 mice were subjected to KP infection, there were no significant differences in bacterial burden or survival compared with controls. These findings suggest that the local inflammatory response enhanced by Reg1 deletion in AT2 cells is insufficient to control KP infection.

Publisher

The American Association of Immunologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3