Estimation of evapotranspiration from UAV high-resolution images for irrigation systems in rice fields on the northern coast of Peru

Author:

Ramos Fernandez LiaORCID,Quispe Tito David JuniorORCID,Altamirano Gutierrez LisetteORCID,Cruz Grimaldo Camila LeandraORCID,Quille Mamani Javier AlvaroORCID,Carbonell Rivera Juan PedroORCID,Torralba Pérez JesusORCID,Ruiz Fernandez Luis ÁngelORCID

Abstract

In view of the growing scarcity of water for agriculture, the increase in food demand and future drought scenarios posed by climate change, it is essential to design new technologies that contribute to lower water consumption. In this research, high-resolution images have been used to estimate evapotranspiration in rice fields by applying the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) energy balance model. For this purpose, 5900 m2 of crop were monitored under continuous flood irrigation (CF) and 2600 m2 under alternate wetting and drying irrigation (AWD), in addition to some plots with lateral filtration. Ten flights were conducted between tillering and flowering phases, five flights with a Matrice 210 UAV equipped with a Parrot Sequoia multispectral camera, and five flights with a Matrice 300 RTK equipped with a H20T thermal camera. Field data were collected from vegetation indices (NDVI and LAI), and readings from a radiometer, to adjust information from multispectral and thermal images, respectively, and to obtain the components of the surface energy balance. Mean values for crop evapotranspiration (ETc) of 6.34 ± 1.49 and 5.84 ± 0.41 mm d-1 were obtained for IC irrigation and AWD irrigation, respectively, obtaining a water saving of 42% with a yield reduction of 14%, providing a guide for proper irrigation management, however, it is suggested to use the model to optimize yield by obtaining critical thresholds for optimal application of AWD in the face of water resource scarcity.

Publisher

Universidad Nacional de Trujillo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3