Runx1 promotes the development of glioma cells by regulating JAK-STAT signalling pathway

Author:

Zhang Yong1,Xia Qiming1,Lin Jun1

Affiliation:

1. Department of Neurosurgery, Guizhou People’s Hospital, Nanming District, Guiyang, Guizhou Province, China

Abstract

IntroductionHuman glioma is known as the most frequent and primary malignant tumour of the central nervous system with high aggression and poor prognosis. Runx1 is essential for haematopoiesis and is associated with tumour progression in several types of cancers. Therefore, this study aimed to investigate the effect and the possible regulatory mechanisms of Runx1 in glioma.Material and methodsThe expression of Runx1 in human glioma tissues was determined by qRT-PCR and immunohistochemistry (IHC). Subsequently, the effect of Runx1 on the glioma cell viability, migration, invasion and the protein level of p21, cyclin D1, MMP2, and MMP4 were detected by MTT, wound healing, transwell assays, and western blot, respectively, in U-138MG and U-251MG cell lines. We then explored the role of Runx1 in vivo by establishing a tumour-bearing mouse model.ResultsThe expression of Runx1 was significantly up-regulated in human glioma tissues and closely associated with tumour grade. Glioma patients with high Runx1 expression had decreased survival rate compared to those with low Runx1 level. Runx1 knockdown inhibited glioma cell viability, migration, invasion, and clone formation, while STAT3 suppressed these inhibitions. Moreover, Runx1 inhibited the activation of SOCS3/SOCS4 promoter, which in turn activated JAK/STAT3 signalling pathway. The tumour volume and weight of the siRunx1 group were lower than in the control group and the tumour mass grow more slowly as well.ConclusionsRunx1 promotes the development of glioma cells via JAK/STAT signalling pathway by inhibiting the activation of SOCS3/SOCS4 promoter.

Publisher

Termedia Sp. z.o.o.

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3