Abstract
We examined changes in barbell velocity and surface electromyographic activity (sEMG) during the concentric (CON) and eccentric (ECC) phases of a bench press set. Ten men executed a set to instant exhaustion as fast as possible, against a low (40% 1-RM) and a heavy load (80% 1-RM), one week apart. The reduction in mean barbell velocity was lower in the ECC compared with the CON phase for both loads (40%1-RM: ECC: −36 ± 21% vs. CON: −63 ± 14%, p < 0.001; 80%1-RM: ECC: −26 ± 15% vs. CON: −59 ± 9%, p < 0.001). Under both loading conditions, sEMG activity of the pectoralis major increased in the last compared to the first repetitions only in the CON phase (by 48.6% and 24.8%, p < 0.01, in the 40% and 80%1-RM, respectively). Similarly, triceps brachii sEMG increased by 15.7% (p = 0.02) and by 21.0% (p < 0.001) during the CON phase in the 40% and 80%1-RM conditions, respectively. However, during the ECC phase, sEMG remained unchanged in the last part of the set for both muscles and loads except for 80%1-RM in the pectoralis major muscle. It was concluded that fatigue measured by velocity loss was lower during the ECC than the CON phase of the bench press movement, when the exercise was performed with maximum velocity to failure, irrespective of the load. sEMG was lower in the ECC than the CON phase for all loads, and increased at the end of the set only during the CON phase, while it remained relatively unchanged in the ECC phase, with the exception of the pectoralis muscle when the load was heavier.
Subject
Physiology (medical),Physical Therapy, Sports Therapy and Rehabilitation
Reference40 articles.
1. Increased rate of force development and neural drive of human skeletal muscle following resistance training
2. Baechle, T. R., Earle, R. W., Haff, G. G., Triplett, N. T., Baechle, T. R., & Roger W.Triplett, N. T. E. (2008). In Essentials of Strength Training and Conditioning, G. G. Haff & N. T. Triplett eds. Human Kinetics.
3. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix
4. Associations Between Muscle Soreness, Damage, and Fatigue
5. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献