Texture analysis on routine MRI sequences to differentiate between focal nodular hyperplasia and hepatocellular adenoma

Author:

Salahshour Faeze,Ghamari Khameneh Afshar,Darban Hosseini Amirkhiz Gisoo,Yazdi Niloofar Ayoobi,Shafiekhani Sajad

Abstract

IntroductionWe investigated the diagnostic power of texture analysis (TA) performed on MRI (T2-weighted, gadolinium-enhanced, and diffusion-weighted images) to differentiate between focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA).Material and methodsThis was a retrospective single-centre study. Patients referred for liver lesion characterization, who had a definitive pathological diagnosis, were included. MRI images were taken by a 3-Tesla scanner. The values of TA parameters were obtained using the ImageJ platform by an observer blinded to the clinical and pathology judgments. A non-parametric Mann-Whitney U test was applied to compare parameters between the 2 groups. With receiver operating characteristic (ROC) analysis, the area under the curve (AUC), sensitivity, and specificity were calculated. Finally, we performed a binary logistic regression analysis. A p-value <0.05 was reported as statistically significant.ResultsA total of 62 patients with 106 lesions were enrolled. T2 hyperintensity, Atoll sign, and intralesional fat were encountered more in HCAs, and central scars were more frequent in FNHs. Multiple TA features showed statistically significant differences between FNHs and HCAs, including skewness on T2W and entropy on all sequences. Skewness on T2W revealed the most significant AUC (0.841, good, p < 0.0001). The resultant model from binary logistic regression was statistically significant (p < 0.0001) and correctly predicted 84.1% of lesions. The corresponding AUC was 0.942 (excellent, 95% CI: 0.892-0.992, p < 0.0001).ConclusionsMultiple first-order TA parameters significantly differ between these lesions and have almost fair to good diagnostic power. They have differentiation potential and can add diagnostic value to routine MRI evaluations.

Publisher

Termedia Sp. z.o.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3