Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats

Author:

Suchomel Timothy J.,Cantwell Conor J.,Campbell Brookelyn A.,Schroeder Zachary S.,Marshall Lauren K.,Taber Christopher B.

Abstract

The purpose of this study was to examine the differences in braking and propulsion force-time characteristics and barbell velocity between traditional (TRAD) and accentuated eccentric loaded (AEL) back squats using various load combinations. Sixteen resistance-trained men participated in four separate testing sessions which included a one repetition maximum (1RM) back squat during the first session and three squat testing sessions. During the squat testing sessions, participants either performed sets of three repetitions of TRAD back squats each with 50, 60, 70, and 80% 1RM or performed the same loads with the addition of weight releasers that increased the total eccentric weight of the first repetition of each set to either 100 (AEL-MAX) or 110% 1RM (AEL-SUPRA). Braking and propulsion mean force, duration, and impulse as well as mean and peak barbell velocity were compared between each condition and load. Significantly greater braking impulses were produced during the AEL-MAX and AEL-SUPRA conditions compared to TRAD (p < 0.03) with small-moderate effect sizes favoring AEL-SUPRA. No other significant differences existed among conditions for other braking, propulsion, or barbell velocity variables. AEL-MAX and AEL-SUPRA back squats may provide a greater braking stimulus compared to TRAD squats; however, the propulsion phase of the movement does not appear to be impacted. From a loading standpoint, larger and smaller load spreads may favor rapid and maximal force production characteristics, respectively. Further research on this topic is needed as a large portion of the braking stimulus experienced during AEL back squats may be influenced by relative strength.

Publisher

Termedia Sp. z.o.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3