The strain and strain rate imaging paradox in echocardiography: overabundant literature in the last two decades but still uncertain clinical utility in an individual case

Author:

Nicolosi Gian Luigi

Abstract

Almost two decades ago strain and strain rate imaging were proposed as a new, potentially more sensitive modality for quantifying both regional and global myocardial function. Until now, however, strain and strain rate imaging have been slow to be incorporated into everyday clinical practice. More recently, two dimensional strain has been claimed as of greater clinical utility, given that it is angle independent, with improved feasibility and reproducibility as compared to tissue Doppler strain. Nevertheless, speckle tracking strain is reliant on 2D image quality and frame rates. Three dimensional speckle tracking could eliminate the problem of through-plane motion inherent in 2D imaging, but 3D strain is currently limited by low frame rates. Another limitation of strain imaging is that the results are dependent on the ultrasound machine on which analyses are performed, with variability in measurements between different vendors. Despite the diagnostic and prognostic advantages of 2D strain, there is a lack of specific therapeutic interventions based on strain and a paucity of long-term large-scale randomized trial evidence on cardiovascular outcomes. After overabundant literature the same definition of normal cut-off values is controversial and not univocal. Further studies are needed, involving both manufacturers and medical professionals, on the additive contribution, possibly different case by case, of interfering and artifactual factors, aside from myocardial function per se. These artifactual determinants and motion artifacts components could be dominant in individual cases and should always be taken into account in the clinical decision making process in a single case.

Publisher

Termedia Sp. z.o.o.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3