Solar flare detection method using Rn-222 radioactive source

Author:

Jonathan Walg ,Anatoly Rodnianski ,Itzhak Orion

Abstract

Solar neutrino detection is known to be a very challenging task, due to the minuscule absorption cross-section and mass of the neutrino. One research showed that relative large solar-flares affected the decay-rates of Mn-54 in December 2006. Since most the radiation emitted during a solar flare are blocked before reaching the earth surface, it should be assumed that such decay-rate changes could be due to neutrino flux increase from the sun, in which only neutrinos can penetrate the radionuclide. This study employs the Rn-222 radioactive source for the task of solar flare detection, based on the prediction that it will provide a stable gamma ray counting rate. In order to ascertain counting stability, three counting systems were constructed to track the count-rate changes. The Rn-222 count-rate measurements showed several radiation counting dips, indicating that the radioactive nuclide can be affected by order of magnitude neutrino flux change from the sun. We conclude that using the cooled Radon source obtained the clearest responses, and therefore this is the preferable system for detecting neutrino emissions from a controlled source.

Publisher

GSC Online Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3