A review: Development of magnetic nano vectors for biomedical applications

Author:

Sumaira Nosheen ,Muhammad Irfan ,Syed Hussain Abidi ,Quratulain Syed ,Farzana Habib ,Amina Asghar ,Bilal Waseem ,Badaruddin Soomro ,Hamza Butt ,Mubashar Akram

Abstract

The study of magnetic nanoparticles (MNPs) is an emergent field of science in this era due to their widespread utilization in the various fields of biomedical science. Developing concerns of magnetic nanoparticles in the researcher’s field led to design a huge number of MNPs including individual or binary metallic particles, oxides, (ferrites), biopolymer coated composites, metallic carbides and graphene mediated nanoparticles. Numerous synthetic routes are defined in literature to attain the desired size, crystal structure, morphology and magnetic properties. To build up biocompatibility, MNPs subjected to surface treatments by coating with some suitable organic or inorganic biomaterials which not only improves its physical characteristics but also elevate its chemical stability. These biomaterials coat either isolatly or in a combined state to enhance the colloidal stability, magnetic properties as well as prevent it cytotoxicity and surface corrosion in the biological media. These properties are essential for the particles and empowering their effectiveness in various biomedical science i.e., drug delivery Magnetic resonance imaging (MRI), hyperthermia, biosensors and gene therapy etc. Current review recapitulates the verdicts of previous research on the subject of magnetic nanoparticles. It will also explain the recent advancements of biomaterials that execute a dynamic role in various medical treatments. Our main focus is to report the particle types, design and properties as well as discussing various synthetic routes including sol gel, co-precipitation, microemulsion, green synthesis, sonochemical method and polyol synthesis etc. These methods produced particles of excellent yield with unique magnetic properties, coercivity and crystallinity and enhanced biocompatibility as compared to traditional methods used to develop MNPs.

Publisher

GSC Online Press

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress in magneto-biopolymeric bionanoarchitectures for biomedical applications;International Journal of Polymeric Materials and Polymeric Biomaterials;2024-07-08

2. Toxicological and Life-Cycle Perspectives on Waste-Derived Nanoparticles;Journal of Materials Science and Chemical Engineering;2024

3. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials;Pharmaceutics;2023-07-03

4. Green synthesis of nickel oxide nanoparticles using Acacia nilotica leaf extracts and investigation of their electrochemical and biological properties;Journal of Taibah University for Science;2023-02-20

5. Molecularly imprinted magnetite nanomaterials for energy storage applications;Advances in Electronic Materials for Clean Energy Conversion and Storage Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3