Artificial intelligence for radiomics; diagnostic biomarkers for neuro-oncology

Author:

Farzan Vahedifard ,Sara Hassani ,Ali Afrasiabi ,Armin Modarresi Esfe

Abstract

Recent advances in medical image analysis have been made to improve our understanding of how disease develops, behaves, and responds to treatment. Magnetic resonance imaging (MRI) and positron emission tomography (PET) advanced imaging strategies provide structural and functional phenotypic biomarkers that correlate with key disease processes. Through radiomics and radiogenomics, ML-medical imaging has opened up new perspectives in high-grade glioma diagnosis. As a result, non-invasive and in vivo biomarkers for patient survival, tumor recurrence, and genomics are identified. Tumor genomic imaging signatures can help identify patients who benefit from targeted therapies. Molecular characterization of gliomas and prediction of their evolution would allow treatment optimization. Radiomics-based biomarkers allow for a more in-depth analysis of pathophysiologic processes and insights into diagnosing better, classifying, stratifying, and prognosticating brain tumors and assessing their response to therapy. Radiomics is a new data-driven approach that can help answer clinical questions like diagnosis, prognosis, and treatment response. With encouraging outcomes in brain tumor patients, radiomics and deep learning are still not widely used in clinical practice, requiring more extensive and practical clinical studies.

Publisher

GSC Online Press

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3