Alternation Frequency Thresholds for Stereopsis as a Technique for Exploring Stereoscopic Difficulties

Author:

Rychkova Svetlana1,Ninio Jacques2

Affiliation:

1. Moscow City Psychological and Pedagogical University, 29 Sretenka St, Moscow 127051, Russia

2. Laboratoire de Physique Statistique, UMR 8550 of the CNRS associated with UPMC Université Paris 06 and Université Paris Diderot, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris cedex 05, France

Abstract

When stereoscopic images are presented alternately to the two eyes, stereopsis occurs at F ⩾ 1 Hz full-cycle frequencies for very simple stimuli, and F ⩾ 3 Hz full-cycle frequencies for random-dot stereograms (eg Ludwig I, Pieper W, Lachnit H, 2007 “Temporal integration of monocular images separated in time: stereopsis, stereoacuity, and binocular luster” Perception & Psychophysics 69 92–102). Using twenty different stereograms presented through liquid crystal shutters, we studied the transition to stereopsis with fifteen subjects. The onset of stereopsis was observed during a stepwise increase of the alternation frequency, and its disappearance was observed during a stepwise decrease in frequency. The lowest F values (around 2.5 Hz) were observed with stimuli involving two to four simple disjoint elements (circles, arcs, rectangles). Higher F values were needed for stimuli containing slanted elements or curved surfaces (about 1 Hz increment), overlapping elements at two different depths (about 2.5 Hz increment), or camouflaged overlapping surfaces (> 7 Hz increment). A textured cylindrical surface with a horizontal axis appeared easier to interpret (5.7 Hz) than a pair of slanted segments separated in depth but forming a cross in projection (8 Hz). Training effects were minimal, and F usually increased as disparities were reduced. The hierarchy of difficulties revealed in the study may shed light on various problems that the brain needs to solve during stereoscopic interpretation. During the construction of the three-dimensional percept, the loss of information due to natural decay of the stimuli traces must be compensated by refreshes of visual input. In the discussion an attempt is made to link our results with recent advances in the comprehension of visual scene memory.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3