A New Variant of the Ouchi Illusion Reveals Fourier-Component-Based Processing

Author:

Ashida Hiroshi1,Kitaoka Akiyoshi2,Sakurai Kenzo3

Affiliation:

1. Graduate School of Letters, Kyoto University, Kyoto 606-8501, Japan; also, ATR Human Information Science Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan

2. Department of Psychology, Ritsumeikan University, Kyoto 603-8577, Japan

3. Department of Psychology, Tohoku Gakuin University, 2-1-1 Tenjinzawa, Izumi-ku, Sendai 981-3193, Japan

Abstract

We report that anomalous motion illusion in a new variant of the Ouchi figure is well predicted by the strength of its Fourier fundamentals and harmonics. The original Ouchi figure consists of a rectangular checkerboard pattern surrounded by an orthogonal rectangular checkerboard pattern, in which illusory relative motion between the two regions is perceived. Although this illusion has been explained in terms of biases in integrating one-dimensional motion signals to determine the two-dimensional motion direction, the physiological mechanism has not been clarified. With our new stimuli, which consisted of thin lines instead of rectangles, we found that the perceived illusion is drastically reduced when the position of each line element is randomly shifted. This is not predicted by simple models of local motion integration along the visible edges. We demonstrate that the relative amplitude of the relevant Fourier fundamentals and harmonics leads to a quantitative prediction. Our analysis was successfully applied to other variants of the Ouchi figure (Khang and Essock 1997 Perception26 585–597), closely predicting the reported rating. The results indicate that the underlying physiological mechanism is sensitive to the Fourier components of the stimuli rather than the visible edges.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3