Affiliation:
1. Laboratoire de Physique Statistique (associated to CNRS and to Paris 6 and Paris 7 universities), École Normale Supérieure, 24 rue Lhomond, 75231 Paris cedex 05, France
Abstract
The reliability of curvature judgments for linear elements was studied, with stereograms that contained a binocular arc with curvature in depth, and either a binocular frontoparallel arc or a monocular one, on a background representing a hemiellipsoid. The subjects made about 15% errors on binocular arcs with curvature in depth, and 60%–80% of these occurred when both the hemiellipsoid and the arc were convex, the arc being perceived as concave, by transparency through the hemiellipsoid. There were also about 15%–30% errors on frontoparallel arcs, but spread among all situations, with a small prevalence of concave judgments. Curvature in depth was assigned to the monocular stimuli in more than 60% of the cases. There was a curvature bias when the monocular arcs were on the nasal side, and were viewed against a concave background. Assuming parallel viewing, nasal ingoing arcs were usually perceived as concave, and nasal outgoing arcs usually perceived as convex, in agreement with geometrical likelihood. Nasal-side elements captured by one eye are, in general, those with the highest likelihood of having matching elements in the other eye. Then the observed nasal bias effect suggests that the matching process in stereopsis could be driven from the nasal sides of the projections in the two cerebral hemispheres.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献