The Perception of Space and Form Recognition in a Simulated Environment: The Case of Minimalist Sensory-Substitution Devices

Author:

Auvray Malika,Philipona David1,O'Regan J Kevin1,Spence Charles

Affiliation:

1. Laboratoire de Psychologie de la Perception, CNRS FRE 2929, Paris, France; and Université Paris 5 René Descartes, 71 avenue Edouard Vaillant, F 92774 Boulogne-Billancourt, France

Abstract

Whenever we explore a simulated environment, the sensorimotor interactions that underlie our perception of space may be modified. We investigated the conditions under which it is possible to acquire the mastery of new sensorimotor laws and thereby to infer new perceptual spaces. A computer interface, based on the principles of minimalist sensory-substitution devices, was designed to enable different possible links between a user's actions (manipulation of a mouse and/or keys of a keyboard) and the resulting pattern of sensory stimulation (visual or auditory) to be established. The interface generated an all-or-none stimulus whose activation varied as a function of the participant's exploration of a hidden form. In this study we addressed the following questions: What are the conditions necessary for participants to understand their actions as constituting a displacement in a simulated space? What are the conditions required for participants to conceive of sensations as originating from the encounter with an object situated in this space? Finally, what are the conditions required for participants to recognise forms within this space? The results of the two experiments reported here show that, under certain conditions, participants can interpret the new sensorimotor laws as movements in a new perceptual space and can recognise simple geometric forms, and that this occurs no matter whether the sensory stimulation is presented in the visual or auditory modality.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3