Spatial Content and Spatial Quantisation Effects in Face Recognition

Author:

Costen Nicholas P12,Parker Denis M1,Craw Ian2

Affiliation:

1. Department of Psychology, University of Aberdeen, Aberdeen AB9 2UB, Scotland, UK

2. Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB9 2TY, Scotland, UK

Abstract

It has recently become apparent that if face images are degraded by spatial quantisation, or block averaging, there is a nonlinear acceleration of the decline in accuracy of recognition as block size increases. This suggests recognition requires a critical minimum range of object spatial frequencies. Two experiments were performed to clarify the phenomenon. In experiment 1, the speed and accuracy of recognition for six frontoparallel photographs of faces were measured. After familiarisation training sessions, the images were shown for 100 ms with 11, 21, and 42 pixels per face, horizontally measured. Transformations calculated to remove the same range of spatial frequencies were performed by means of quantisation, a Fourier low-pass filter, and Gaussian blurring. Although accuracy declined and speed increased in a significant, nonlinear manner in all cases as the image quality was reduced, it did so at a faster rate for the quantised images. In experiment 2, faces rated as being typical were shown at 9, 12, 23, and 45 pixels per face and with appropriate Fourier low-pass versions. The nonlinear decline was confirmed and it was shown that it could not be attributed to a ceiling effect. A further condition allowed quantised and Fourier low-pass conditions to be compared with an unstructured-noise condition of equal strength to that of the quantised images. These gave comparable, but slightly less impaired, recognition than the quantised images. It can be inferred from these results that the removal of a critical range of at least 8–16 cycles per face of information explains the step decline in recognition seen with quantised images. However, the decline found with quantised images is reinforced by internal masking from pixelisation.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3