Measuring and Modeling Real-Time Responses to Music: The Dynamics of Tonality Induction

Author:

Toiviainen Petri1,Krumhansl Carol L2

Affiliation:

1. Department of Music, University of Jyväskylä, PO Box 35, Jyväskylä 40351, Finland

2. Department of Psychology, Cornell University, 214 Uris Hall, Ithaca, NY 14853-7601, USA

Abstract

We examined a variety of real-time responses evoked by a single piece of music, the organ Duetto BWV 805 by J S Bach. The primary data came from a concurrent probe-tone method in which the probe-tone is sounded continuously with the music. Listeners judged how well the probe tone fit with the music at each point in time. The process was repeated for all probe tones of the chromatic scale. A self-organizing map (SOM) [Kohonen 1997 Self-organizing Maps (Berlin: Springer)] was used to represent the developing and changing sense of key reflected in these judgments. The SOM was trained on the probe-tone profiles for 24 major and minor keys (Krumhansl and Kessler 1982 Psychological Review89 334–368). Projecting the concurrent probe-tone data onto the map showed changes both in the perceived keys and in their strengths. Two dynamic models of tonality induction were tested. Model 1 is based on pitch class distributions. Model 2 is based on the tone-transition distributions; it tested the idea that the order of tones might provide additional information about tonality. Both models contained dynamic components for characterizing pitch strength and creating pitch memory representations. Both models produced results closely matching those of the concurrent probe-tone data. Finally realtime judgments of tension were measured. Tension correlated with distance away from the predominant key in the direction of keys built on the dominant and supertonic tones, and also correlated with dissonance.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information content of note transitions in the music of J. S. Bach;Physical Review Research;2024-02-02

2. A Key-Finding Algorithm Based on Music Signature;Archives of Acoustics;2023-07-26

3. Does order matter? Harmonic priming effects for scrambled tonal chord sequences.;Journal of Experimental Psychology: Human Perception and Performance;2023-07

4. Real-Time Modulation Perception in Western Classical Music;Music Perception;2022-06-01

5. Curiosity Emerging From the Perception of Change in Music;Empirical Studies of the Arts;2021-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3