Preserved Striate Cortex is Not Sufficient to Support the McCollough Effect: Evidence from two Patients with Cerebral Achromatopsia

Author:

Mullin Caitlin R,Démonet Jean François1,Kentridge Robert W2,Heywood Charles A2,Goodale Melvyn A3,Steeves Jennifer K E

Affiliation:

1. INSERM U825, Hôpital Purpan, Toulouse, France

2. Department of Psychology, Durham University, Durham, UK

3. Department of Psychology, The University of Western Ontario, London, ON, Canada

Abstract

The McCollough effect (ME) is a colour aftereffect contingent on pattern orientation. This effect is generally thought to be mediated by primary visual cortex (V1) although this has remained the subject of some debate. To determine whether V1 is in fact sufficient to subserve the ME, we compared McCollough adaptation in controls to adaptation in two patients with damage to ventrotemporal cortex, resulting in achromatopsia, but who have spared V1. Each of these patients has some residual colour abilities of which he is unaware. Participants performed a 2AFC orientation-discrimination task for pairs of oblique and vertical/horizontal gratings both before and after adaptation to red/green oblique induction gratings. Successful ME induction would manifest itself as an improvement in oblique-orientation discrimination owing to the additional colour cue after adaptation. Indeed, in controls oblique grating discrimination improved post-adaptation. Further, a subdivision of our control group demonstrated successful ME induction despite a lack of conscious awareness of the added colour cue, indicating that conscious colour awareness is not required for ME induction. The patients, however, did not show improvement in oblique-orientation discrimination, indicating a lack of ME induction. This suggests that V1 must be connected to higher cortical colour areas to drive ME induction.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3