Spatial-Gradient Limit on Perception of Multiple Motion

Author:

Hermush Yoseph1,Yeshurun Yehezkel1

Affiliation:

1. Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Abstract

Motion is perceived whenever a subject is presented with an appropriate spatiotemporal visual pattern. Like many other visual tasks, motion perception involves both local and global processing, and thus might be subject to the well-known paradox that arises from the fact that local features and observations form the basis for global perception, but sometimes this global percept can not be easily derived from any single local observation, as is best exemplified by the aperture problem. Globally, dual (transparent) motion can be readily perceived. Spatial limits on the local ability to perceive multiple motion are sought. By using the framework of apparent motion, it is found that dual, orthogonally oriented motion can be perceived only when the dots that constitute the two motions are separated by some spatial limit. For short-range apparent motion, the limit is found to be comparable to Dmax, and the visual system cannot perceive more than a single coherent motion in a local ‘patch’ of radius Dmax. It was also found that this spatial limit on local-motion perception is not constant, but depends linearly on the spatial organisation of the stimuli, and vanishes for stimuli having reverse contrast. The lower bound on the ability to perceive multiple motion is compared with some well-known bounds in stereopsis, and a cortical columnar architecture that might account for it is proposed.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuning Self-Motion Perception in Virtual Reality with Visual Illusions;IEEE Transactions on Visualization and Computer Graphics;2012-07

2. Spatial Size Limits in Stereoscopic Vision;Visual Attention Mechanisms;2002

3. Cortical hypercolumn size determines stereo fusion limits;Biological Cybernetics;1999-02-10

4. Spatial size limits in stereoscopic vision;Spatial Vision;1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3