Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model

Author:

Leung Yee1,Mei Chang-Lin2,Zhang Wen-Xiu2

Affiliation:

1. Department of Geography, Centre for Environmental Studies, and Joint Laboratory for Geoinformation Science, The Chinese University of Hong Kong, Shatin, Hong Kong

2. School of Science, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, People's Republic of China

Abstract

Geographically weighted regression (GWR) is a way of exploring spatial nonstationarity by calibrating a multiple regression model which allows different relationships to exist at different points in space. Nevertheless, formal testing procedures for spatial nonstationarity have not been developed since the inception of the model. In this paper the authors focus mainly on the development of statistical testing methods relating to this model. Some appropriate statistics for testing the goodness of fit of the GWR model and for testing variation of the parameters in the model are proposed and their approximated distributions are investigated. The work makes it possible to test spatial nonstationarity in a conventional statistical manner. To substantiate the theoretical arguments, some simulations are run to examine the power of the statistics for exploring spatial nonstationarity and the results are encouraging. To streamline the model, a stepwise procedure for choosing important independent variables is also formulated. In the last section, a prediction problem based on the GWR model is studied, and a confidence interval for the true value of the dependent variable at a new location is also established. The study paves the path for formal analysis of spatial nonstationarity on the basis of the GWR model.

Publisher

SAGE Publications

Subject

Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 332 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3