Affiliation:
1. Centre for Visual Science, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
Abstract
Information about the visual angle size of objects is important for maintaining object constancy with variations in viewing distance. Although human observers are quite accurate at judging spatial separations (or cross-sectional size), they are prone to error when there are other spans nearby, as in classical illusions such as the Müller-Lyer illusion. It is possible to reconcile these aspects of size perception by assuming that the size domain is sampled sparsely. It was shown by means of a visual search procedure that the size of objects is processed preattentively and in parallel across the visual field. It was demonstrated that an object's size, rather than its boundary curvature or spatial-frequency content, provides the basis for parallel visual search. It was also shown that texture borders could be substituted for luminance borders, indicating that object boundaries at the relevant spatial scale provide the input to size perception. Parallel processing imposes a severe computational constraint which provides support for the assumption of sparse sampling. An economical model based on several broadly tuned layers of size detectors is proposed to account for the parallel extraction of size, the Weberian behaviour of size discrimination, and the occurrence of strong interference effects in the size domain.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献