Monocular and Dichoptic Interactions between Moving and Stationary Stimuli

Author:

Wade Nicholas J1,Swanston Michael T2

Affiliation:

1. Department of Psychology, University of Dundee, Dundee DD1 4HN, Scotland, UK

2. Dundee Institute of Technology, Dundee DD1 1HG, Scotland, UK

Abstract

Visual motion of a physically stationary stimulus can be induced by the movement of adjacent stimuli. The frequencies of motion reports and the angular separations required to induce motion were determined for a number of stimulus configurations. A stationary stimulus was fixated in the centre of the display and the point at which induced motion was initially reported was measured. In the first experiment either one or two stationary stimuli were presented in the centre of a display and either one or two similar stimuli moved horizontally towards them. The percentage of trials on which motion was induced varied with the display configuration, being greatest with two moving and one stationary stimuli. The angular separations at which motion was reported were about 2 deg for all conditions. In the second experiment the binocular interaction of such induced motion was examined. A single static fixation stimulus was presented binocularly and a range of monocular or dichoptic conditions was examined: a single moving stimulus to one eye, two moving stimuli to one eye, or two moving stimuli dichoptically. Induced motion was reported on about 90% of the trials for the monocular and dichoptic conditions with two moving stimuli. Motion was first induced at similar angular separations by two moving stimuli, whether presented monocularly or dichoptically. Binocular interaction was further examined with a display that induced motion in the stimulus presented to one eye but not in that presented to the other: this resulted in the apparent motion in depth of the binocularly fixated stimulus.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3