Affiliation:
1. School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
Abstract
We generalised the stream/bounce effect to dynamic random element displays containing luminance- or disparity-defined targets. Previous studies investigating audio-visual interactions in this context have exclusively employed motion sequences with luminance-defined disks or squares and have focused on properties of the accompanying brief stimuli rather than the visual properties of the motion targets. We found that the presence of a brief sound temporally close to coincidence, or a visual flash at coincidence significantly promote bounce perception for motion targets defined by either luminance contrast or disparity contrast. A brief tone significantly promoted bouncing of luminance-defined targets above a no-sound baseline when it was presented at least 250 ms before coincidence and 100 ms after coincidence. A similar pattern was observed for disparity-defined targets, though the tone promoted bouncing above the no-sound baseline when presented at least 350 ms before and 300 ms after coincidence. We further explored the temporal properties of audio-visual interactions for these two display types and found that bounce perception saturated at similar durations after coincidence. The stream/bounce illusion manifests itself in dynamic random-element displays and is similar for luminance- and disparity-defined motion targets.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献