Timing Accuracy in Motion Extrapolation: Reverse Effects of Target Size and Visible Extent of Motion at Low and High Speeds

Author:

Sokolov Alexander1,Pavlova Marina2

Affiliation:

1. Institut für Psychologie, Technische Universität Braunschweig, Spielmannstrasse 19, D 38106 Braunschweig, Germany

2. Institut für Medizinische Psychologie und Verhaltensneurobiologie, MEG-Zentrum, and Entwicklungsneurologie, Kinderklinik, Universität Tübingen, Hoppe-Seyler-Strasse 1, D 72076 Tübingen, Germany

Abstract

By varying target size, speed, and extent of visible motion we examined the timing accuracy in motion extrapolation. Small or large targets (0.2 or 0.8 deg) moved at either 2.5, 5, or 10 deg s−1 across a horizontal path (2.5 or 10 deg) and then vanished behind an occluder. Observers responded when they judged that the target had reached a randomly specified position between 0 and 12 deg. With higher speeds, the timing accuracy (the reverse of absolute error) was better for small than for large targets, and for long than for short visible extents. With low speed, these effects were reversed. In addition, while long visible extents yielded a greater accuracy at high than at low speeds, for short extents the accuracy was much better with the low speed. The findings suggest that, when extrapolating motion with targets and visible extents of different sizes, the visual system implements different scaling algorithms depending on target speed. At higher speeds, processing of visible and occluded motion is likely to share a common scaling mechanism based on velocity transposition. Reverse effects for target size and extent of visible motion at low and high speeds converge with the assumption of two distinct speed-tuned motion-processing mechanisms in human vision.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3