Depth Interactions between Inclined and Slanted Surfaces in Vertical and Horizontal Orientations

Author:

Pierce Byron J1,Howard Ian P2,Feresin Catina3

Affiliation:

1. Air Force Research Laboratory, 6001 S Power Road, Building 558, Mesa, AZ 85206-0904, USA

2. Centre for Vision Research, 103 Farquharson Building, York University, Toronto, Ontario M3J 1P3, Canada

3. Department of Psychology, Università di Trieste, via deli'Università 7, 34123 Trieste, Italy

Abstract

Depth interactions between a frontal test surface and an adjacent induction surface were measured as a function of the type of disparity in the induction surface and of the vertical/horizontal orientation of the boundary between the surfaces. The types of disparity were 4° horizontal-shear disparity, 4° vertical-shear disparity, and 4° rotation disparity; 4% horizontal-size disparity, 4% vertical-size disparity, and 4% overall-size disparity. Depth contrast in a frontal surface was produced by surfaces containing horizontal-size disparity but not by those containing horizontal-shear disparity. Vertical-shear and vertical-size disparities produced induced effects in both the induction and the test surface, which is here explained in terms of deformation-disparity processing. Effects of rotation disparity on the test surface can be accounted for in terms of cyclovergence, deformation disparity, and perhaps also depth contrast. The fact that horizontal-size disparity produced more depth contrast than horizontal-shear disparity is due to an anisotropy of disparity processing rather than the relative orientation of the surfaces. Ground surfaces appeared more slanted than ceiling surfaces. Surfaces containing horizontal disparities produced a sharp boundary with the test surface because horizontal disparities are processed locally. Surfaces with vertical disparities produced a gradual boundary with the test surface because vertical disparities are processed over a wider area.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3