Riemannian Geometries of Variable Curvature in Visual Space: Visual Alleys, Horopters, and Triangles in Big Open Fields

Author:

Battro Antonio M1,Netto Scipione di Pierro2,Rozestraten Reinier J A2

Affiliation:

1. Centro de Investigaciones Filosóficas, Cangallo 1479, Buenos Aires, Argentina

2. Faculdade de Educacão, Universidade de São Paulo and Grupo de Estudos Cognitivos, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, São Paulo, Brasil

Abstract

Luneburg's model for computation of the curvature K of visual two-dimensional space (horizontal visual surface) was tested with equidistant and parallel alleys in large open spaces. Forty-six subjects used stakes to produce 406 experimental alleys of variable sizes (from 5 × 1 to 240 m × 48 m). The results show that, contrary to results obtained under laboratory conditions with small alleys and light spots, the individual curvature of visual space does not have a negative constant value. K varies in the interval −1 to +1 in ninety computed settings: K ≥ 0 ( N = 38); K < 0 ( N = 52). Therefore the Lobachevskian geometry currently attributed to visual space ought to be replaced by a Riemannian geometry of variable curvature. Moreover K is an individual function dependant on the size of the alley (distance from the subject), and visual perception would be better understood as scale-dependent. Independently of Luneburg's model we have tested the constancy of the curvature hypothesis in experiments with horopters and visual triangles. The results obtained invalidate Luneburg's hypothesis also.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Reference16 articles.

1. Aleksandrov A D, Kolmogorov A N, Laurent'ev M A, 1959 Mathematics. Its Content, Methods and Meaning Vol II pp 80–97, Vol III p 173 (Cambridge Mass: MIT Press)

2. Analysis of Experiments in Binocular Space Perception

3. Curvature of Binocular Visual Space An Experiment

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3