Affiliation:
1. Centre for Eye Research, Department of Optometry, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Abstract
The importance in mobility performance of the rate of presentation of visual information, binocular versus monocular vision, the use of multiple rather than single reference points, and local motion parallax was investigated in two experiments. In each experiment ten subjects walked a triangular mobility course in a totally darkened room; the only visible targets were light emitting diodes (LEDs), mounted on poles, at the apices of the triangle. The LEDs were mounted so that one or two could be used in a trial; if two were used the distance between them was varied horizontally (in experiment 1) and vertically (in experiment 2). The subjects walked around the course under a range of conditions, including two ‘optimal trials’ in full light. The LEDs were flashed for 1 ms at frequencies of 0.5, 1 and 5 Hz in experiment 1 and at 1 and 5 Hz in experiment 2. Mobility was measured with the use of an ultrasonic locator system which measured the subject's position on the course 10 times per second. The mean velocity of the subject in traversing the course was significantly reduced when the flash rate was slower, when the subject had one eye occluded, or when there was only one LED on the pole; when the spacing between the LEDs was varied, either vertically or horizontally performance was unaffected. These results imply that the frequency of updating of visual information is important in determining mobility performance, as are binocular cues, but that local motion parallax is not important. The number of LEDs on each pole had a significant effect on mobility performance: an ‘object’ (two lights) gave more information than a point reference.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献