Inability of Humans to Discriminate between Visual Textures That Agree in Second-Order Statistics—Revisited

Author:

Julesz B1,Gilbert E N1,Shepp L A1,Frisch H L2

Affiliation:

1. Bell Laboratories, Murray Hill, New Jersey 07974, USA

2. State University of New York, Albany, New York, USA

Abstract

In an earlier study by Julesz (1962) pairs of random textures were generated side-by-side using a Markov process with different third-order joint-probability distributions but identical first- and second-order distributions. Such texture pairs could not be discriminated from each other by the human visual system without scrutiny. Unfortunately, Markov processes are inherently one-dimensional while the general processes underlying visual texture discrimination are two-dimensional. Here three new methods are introduced that generate two-dimensional non-Markovian textures with different third-order but identical first- and second-order statistics. All three methods generate texture pairs that cannot be discriminated from each other. The lack of texture discrimination is the more astonishing since the individual elements that form the texture pair are clearly perceived as being very different. However, a counterexample was found that yields discrimination although the texture pair has approximately identical second-order statistics. This case can be explained by assuming that early feature extractors do some preprocessing. These new demonstrations give support to a model of texture discrimination in which the stimulus is first analyzed by local feature extractors that can detect only simple features such as dots and edges of given sizes and orientations. Then the outputs of these simple extractors are evaluated by a global processor that can compute only second- or first-order statistics (that is can compare at most two such outputs).

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 270 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3