Using the Self-Organising Map to Identify Regularities across Country-Specific Housing-Market Contexts

Author:

Kauko Tom1

Affiliation:

1. OTB Research Institute for Housing, Urban and Mobility Studies, Jaffalaan 9, PO Box 5030, NL-2600 GA Delft, The Netherlands

Abstract

The aim of exploring and monitoring housing-market fundamentals (prices, dwelling features, area density, residents, and so on) on a macrolocational level relates to both public and private sector policymaking. Housing market segmentation (that is, the emergence of housing submarkets), a concept with increasing relevance, is defined as the differentiation of housing in terms of the income and preferences of the residents and in terms of administrative circumstances. In order to capture such segmentation empirically, the author applies a fairly new and emerging technique known as the ‘self-organising’ map (SOM), or ‘Kohonen map’. The SOM is a type of (artificial) neural network—a nonlinear and flexible (that is, nonparametric or semiparametric) regression and ‘machine learning’ technique. By utilising the ability of the SOM to visualise patterns, one can analyse various dimensions within the variation of the dataset. Segmentation may then be detected depending on the resulting patterns across the map layers, each of which represents the data variation for one input variable. Utilising an inductive modelling strategy, the author runs cross-sectional and nationwide data on the owner-occupied housing markets of Finland (documentation presented elsewhere), the Netherlands, and Hungary with the SOM technique. On the basis of the resulting configurations certain regularities (similarities and differences) across the three national contexts are identified. In all three cases the segments are determined by physical and institutional differences between the housing bundles and localities. The exercise demonstrates how the inductive SOM-based approach is well-suited for illustrating the contextual factors that determine housing market structure.

Publisher

SAGE Publications

Subject

General Environmental Science,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3