Anomaly Detection in Smart Agriculture Systems on Network Edge Using Deep Learning Technique

Author:

Alanazi BandarORCID,Alrashdi IbrahimORCID

Abstract

With the widespread adoption of Internet of Things (IoT) technologies across various domains, including smart agriculture, urban environments, and homes, the threat of zero-day attacks has surged. This research delves into the application of deep learning techniques to detect anomalies in smart agricultural systems at the network edge, with a specific focus on safeguarding them against Distributed Denial of Service (DDoS) attacks. In this study, we propose an anomaly detection model based on CNN-LSTM to analyze sensor data collected from IoT devices. We rigorously train and test our model using two distinct datasets of sensor readings, simulating potential DDoS attack scenarios. The model's performance is assessed using key metrics such as detection accuracy, recall, and F1-score. Our results demonstrate the effectiveness of our approach, achieving an impressive anomaly detection accuracy of 99.7%. This research contributes significantly to the development of robust and efficient attack and anomaly detection techniques for smart agriculture systems at the network edge, ultimately enhancing the reliability and sustainability of agricultural practices.

Publisher

Deepology Lab

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3