Building a Sustainable Social Feedback Loop: A Machine Intelligence Approach for Twitter Opinion Mining

Author:

Abdelhafeez AhmedORCID,Aziz AlberORCID,Khalil NarimanORCID

Abstract

This paper presents a sustainable machine intelligence approach for Twitter opinion mining, focusing on building a socially responsible feedback loop. We propose a methodology that combines advanced machine learning algorithms with eco-conscious practices to extract sentiment-related insights from Twitter data while minimizing environmental impact. The preprocessing steps involve removing special characters, tokenization, stop word removal, handling user handles and URLs, and lemmatization or stemming. Sentiment classification is performed using the Extra Tree Classifier, an ensemble learning algorithm that incorporates random feature selection and bagging techniques. Experimental results demonstrate the effectiveness of our approach in accurately classifying tweets into positive, negative, and neutral sentiment categories. The visualizations of class distribution, number of tokens per tweet, and word clouds provide further insights into the sentiment landscape on Twitter. Our research contributes to the development of sustainable and inclusive approaches for Twitter opinion mining, ensuring minimal environmental impact while capturing valuable sentimental information.

Publisher

Deepology Lab

Subject

General Materials Science,Energy Engineering and Power Technology,Fuel Technology,Environmental Engineering,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3