SOSYAL MEDYA PAYLAŞIMLARINDA KARAR MEKANİZMALARININ ÖĞRENME ALGORİTMALARIYLA KARŞILAŞTIRMALI ANALİZİ

Author:

Demirbilek Dudu1ORCID,Ersoy Mevlüt1ORCID

Affiliation:

1. Süleyman Demirel Üniversitesi

Abstract

Dünya’da ve Türkiye’de artan internet kullanımına bağlı olarak bireyler sosyal medya platformlarını da aktif olarak kullanmaktadır. Kullanıcılar sosyal medya platformlarını kişisel gelişim, alışveriş, ticaret, eğitim, sosyalleşmek, arkadaşlıklar edinmek, çevrimiçi içerik üretmek ve bu içerikleri diğer kullanıcılarla paylaşabilmek amacıyla kullanmaktadırlar. Ama bu iyi niyetli kullanımların yanı sıra karşıdaki kişiye zarar vermek, onu küçük düşürmek, itibarını zedelemek ya da bilerek ve isteyerek zorbalık yapmak amacıyla da kullanımlar söz konusudur. Araştırmadaki amaç sosyal medya platformlarından biri olan Twitter’dan alınan yorumları doğal dil işleme süreçlerine tabi tutarak yorumlar içerisinde siber zorbalık olup olmadığını tespit etmek ve bu verilerin girdi olarak kullanıldığı sınıflandırma algoritmalarından elde edilen sonuçları karşılaştırarak en iyi sonucu elde etmektir. Araştırmada 11114 yorumdan oluşan veri seti doğal dil işleme süreçlerinden geçirilerek sınıflandırma algoritmalarına giriş verisi olarak verilmiştir. Bu verilerin bir bölümü eğitim seti olarak bir bölümü de test seti olarak kullanılmıştır. Sonuçta sınıflandırma algoritmalarından Ekstra Trees algoritmasından %86,95 doğruluk oranı elde edilerek diğer sınıflandırma algoritmasına göre daha başarılı olduğu gözlemlenmiştir.

Publisher

Isparta Uygulamali Bilimler Universitesi

Reference35 articles.

1. [1] A.İ. Kesici, S. Mert, D.M. Gezgin, Siber Dünyanın Karanlık Yüzü: Güvenlikten Zorbalığa Modern Problemler, Balkan 10th International Conference On Applied Sciences (2024) 6-7.

2. [2] We Are Social Meltwater, Digital 2023 Global Overview Report (2023) 213.

3. [3] E.S. Dinç, Sosyal Medya Ortamlarında Si̇ber Zorbalik: Li̇se Öğrenci̇leri̇ni̇n Si̇ber Zorbalık Deneyi̇mleri̇ni̇n İncelenmesi̇, Electronic Journal of New Media 4(1) (2020) 24–39.

4. [4] O. Sevli, S. Sezgin, Sosyal Medya Paylaşımlarında Siber Zorbalığın Tespiti ve Kategorizasyonuna Yönelik Makine Öğrenmesine Dayalı Bir Sınıflandırma, Burs 3rd International Scientific Research Congress, 2022.

5. [5] E. Yazğılı, Makine Öğrenmesi Yöntemleri Kullanarak Siber Zorbalık Tespiti, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Yazılım Mühendisliği Anabilim Dalı, Fırat Üniversitesi (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3