Author:
Kalaiselvi K., ,Mohanapriya N.,Vernold Vivin J., ,
Abstract
An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.
Publisher
Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)