Abstract
Let k\in{\mathbb N}_0 and K\in \mathbb C, where {\mathbb N}_0, \mathbb C denote the set of nonnegative integers and complex numbers, respectively. We give all functions f, h_1, h_2, h_3, h_4:{\mathbb N}_0\to \mathbb C which satisfy the relation \[f(x_1^2+x_2^2+x_3^2+x_4^2+k)=h_1(x_1)+h_2(x_2)+h_3(x_3)+h_4(x_4)+K\] for every x_1, x_2, x_3, x_4\in{\mathbb N}_0. We also give all arithmetical functions F, H_1, H_2, H_3, H_4:{\mathbb N}\to \mathbb C which satisfy the relation \[F(x_1^2+x_2^2+x_3^2+x_4^2+k)=H_1(x_1)+H_2(x_2)+H_3(x_3)+H_4(x_4)+K\] for every x_1,x_2, x_3,x_4\in{\mathbb N}, where {\mathbb N} denotes the set of all positive integers.
Publisher
Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)