Abstract
Let $f,g$ be completely multiplicative functions, $\vert f(n)\vert=\vert g(n)\vert =1 (n\in\mathbb{N})$. Assume that $${1\over {\log x}}\sum_{n\le x}{\vert g([\sqrt{2}n])-Cf(n)\vert\over n}\to 0 \quad (x\to\infty).$$ Then $$f(n)=g(n)=n^{i\tau},\quad C=(\sqrt{2})^{i\tau}, \tau\in \mathbb{R}.$$
Publisher
Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献