Second-order linear recurrences with identically distributed residues modulo p^e

Author:

,Somer LawrenceORCID,Křížek MichalORCID,

Abstract

Let $p$ be an odd prime and let $u(a,-1)$ and $u(a',-1)$ be two Lucas sequences whose discriminants have the same nonzero quadratic character modulo $p$ and whose periods modulo $p$ are equal. We prove that there is then an integer $c$ such that for all $d\in\mathbb Z_p$, the frequency with which $d$ appears in a full period of $u(a,-1)\pmod p$ is the same frequency as $cd$ appears in $u(a',-1)\pmod p$. Here $u(a,b)$ satisfies the recursion relation $u_{n+2}=au_{n+1}+bu_n$ with initial terms $u_0=0$ and $u_1=1$. Similar results are obtained for the companion Lucas sequences $v(a,-1)$ and $v(a',-1)$. This paper extends analogous statements for Lucas sequences of the form $u(a,1)\pmod p$ given in a previous article. We further generalize our results by showing for a certain class of primes $p$ that if $e>1$, $b=\pm 1$, and $u(a,b)$ and $u(a',b)$ are Lucas sequences with the same period modulo $p$, then there exists an integer $c$ such that for all residues $d\pmod{p^e}$, the frequency with which $d$ appears in $u(a,b)\pmod{p^e}$ is the same frequency as $cd$ appears in $u(a',b)\pmod{p^e}$.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3