Abstract
For a given prime p ≥ 5, let ℤ_p denote the set of rational p-integers (those rational numbers whose denominator is not divisible by p). In this paper, we establish some congruences modulo a prime power p5 on the hyper-sums of powers of integers in terms of Fermat quotient, Wolstenholme quotient, Bernoulli and Euler numbers.
Publisher
Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)