Abstract
A Lucas polynomial sequence is a pair of generalized polynomial sequences that satisfy the Lucas recurrence relation. Special cases include Fibonacci polynomials, Lucas polynomials, and Balancing polynomials. We define the (a,b)-type Lucas polynomial sequences and prove that their Melham’s sums have some interesting divisibility properties. Results in this paper generalize the original Melham’s conjectures.
Publisher
Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)