Assessment of Radon Potential along Local Fault System in Sofia, Bulgaria (at Specific Test Site)

Author:

Antonov Dimitar,Ivanova Kremena,Benderev Aleksey,Djunakova Desislava,Yordanov Todor,Kolev Sava,Kunovska Bistra

Abstract

Environmental spread of radon gas (222Rn) has been intensively investigated in the last few years due to its harmful effects on human health. A concept of radon index is used to characterize the geogenic radon potential of the terrain, as the latter gives the probability of the presence of radon gas concentration in a building, the genesis of which is directly related to the influence of the earth's surface. One of the approaches for quantifying the radon index is based on a multivariate cross-tabulation, which includes two parameters – radon  concentration in soil gas and gas permeability of the earth layer (at 80 cm). The geology of the specific site (approx. 350 m2) is characterized by the Pliocene clayey-sandy Formation, covered with Quaternary sediments. From tectonic point of view, the site as a part of Sofia Graben, has being subject of events related mainly with the Late Alpine deformations heading to very complex structures and fault systems. In situ measurements performed in the summer of 2023 at ten distinct points at the surface and 11 distinct points at two meters in depth from the surface vary as follows: from 44.2 to 189.0 kBq/m3 (radon soil gas), from 2.0E-11 to 1.8E-13 m2 (soil gas permeability), and from 0.10 to 0.17 µSv/h (gamma dose rate). Based on that, the radon index of the site is determined from “medium” to “high”, with a predominance of the latter. One of the reasons for the high radon potential is the presence of sub-faults connected with the major Sofia fault system and their influence on the radon concentration. Therefore, in future investigations of the radon index, a very detailed survey of the site's geology is needed in the territory with appearing fault systems. In addition, based on the determination of the radon index, the forthcoming construction activities in such areas will be advised to use preventive measures during the construction of the new building to avoid future radon gas influxes on the premises.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3