New Approach to Underwater Image Enhancement Using Modified Residual Blocks in Generator Architecture for Improved Cycle Generative Adversarial Networks

Author:

Selvaraju Karthik,Rajamani Samson

Abstract

Images captured underwater frequently have a low resolution as a result of a number of issues including light attenuation, backscattering, and colour distortion. The restoration of underwater images, which serves as an essential building block for the field of underwater vision research, remains a difficult endeavor. The process of removing the haziness and the colour distortion caused by the underwater environs is the main focus of the work that goes into the restoration of underwater images. Within the confines of this research, we present an enhanced approach for the enhancement of underwater images called Improved Cycle GAN (Generative Adversarial Network). The suggested approach makes use of a dual architecture that is composed of a generator network and a discriminator network in order to learn the mapping between low-quality underwater photographs and high-quality images. This dual architecture is comprised of a generator network and a discriminator network. The generator network is trained to transform the input image into an enhanced image, while the discriminator network evaluates the realism of the generated images. The suggested method outperforms state-of-the-art visual quality methods on a real-world UFO underwater image dataset. The proposed method is used to recover the original image. In order to measure quantity, the underwater image quality measure attributes called underwater image colourfulness measure (UICM), underwater image sharpness measure (UISM), and underwater image contrast measure (UIConM) are assessed. The proposed method could be employed in various underwater imaging processing applications, such as underwater surveillance, marine biology research, and underwater exploration, where high-quality images are crucial for effective analysis and decision-making.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3