Texture Analysis of Adenomatous and Metastatic Adrenal Lesions on Native and Contrast-enhanced Computed Tomography

Author:

Belyanova Magdalena,Krupev Martin

Abstract

Differentiating lipid-poor adrenal adenomas from adrenal metastases is not possible without performing a dedicated contrast-enhanced CT (CECT) protocol. Our purpose is to evaluate the possible role of texture analysis in classifying adrenal lesions. This is a retrospective study. We evaluated 33 patients with 47 metastases and 43 patients with 47 adenomas. Seven of the adenomas were lipid-poor, and the rest – lipid-rich adenomas. We used commercially available software for lesion segmentation and texture analysis on native and arterial phase CT images with a slice thickness of 2 mm. The segmentation was semi-automated, and features were computed on the resulting regions of interest (ROI) for each lesion on both native and arterial phases. Two conventional (HU standard deviation, Histogram Entropy) and six second-order texture features (GLCM – Homogeneity, Energy, Entropy log 10, Contrast, Dissimilarity, NGDLM–Busyness) were calculated. For statistical analysis the IBM SPSS 19 package was used to compare the following groups in both phases: 1. Adenomas--Metastasis; 2. Lipid-rich adenomas (LRA)--metastases; 3. Lipid-rich--lipid-poor adenomas (LPA); 4. Lipid-poor adenomas--metastases. There was a statistically significant difference in the distribution of some conventional (Histogram Entropy) and second-order features (GLCM – Homogeneity, Energy, Entropy log 10, Dissimilarity) in the first group on the native as well as on the enhanced images. The results were similar when comparing lipid-rich adenomas to metastases. Only native phase derived features were discriminative between lipid-rich and lipid-poor adenomas, with no difference between parameters on CECT. No difference was found between any of the texture features in lipid-poor adenomas and metastases for both phases. First- and second-order texture features were graded based on their potential for serving as classifier tools. Unenhanced features ranked higher. Further research and validation are needed to discover the most robust set of features for differentiating between lipid-poor adenomas and metastases. 

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3