Research on Improving Seals to Suppress Vibration of Rotary Machines

Author:

Lu Congxiang,Shevchenko Serhii,Geichuk Volodymyr,Korchak Mykola,Topalov Andrii

Abstract

There is a constant demand for higher equipment parameters, such as pressure of a sealing medium and shaft rotation speed. However, as the parameters rise it becomes more difficult to ensure hermetization efficiency. Moreover, sealing systems affect the overall operational safety of the equipment, especially vibratory. Non-contact seals are considered  hydrostatodynamic supports that can effectively damp rotor oscillations. Models of an impulse and a groove seals, models of rotor-seals system and rotor-auto-unloading system, models of a shaftless pump are studied to evaluate the effect of these sealing systems on oscillatory characteristics of rotor. Analytical dependencies for computation the dynamic characteristics of impulse seals, hydromechanical systems rotor-seals and rotor-auto-unloading, as well as shaftless pumps are obtained. These dependencies describe the radial-angular vibrations of a centrifugal machine rotor in seals-supports. Equations for computation the amplitude-frequency characteristics are given. The directions of improving the  environmental safety of critical pumping equipment by purposefully increasing the rigidity of non-contact seals that leads to higher rotor vibration stability have been determined.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3